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Abstract. Motivated by the study of motion in a random environment we introduce and
investigate a variant of the Temperley–Lieb algebra. This algebra is very rich, providing us
with three classes of solutions of the Yang–Baxter equation. This allows us to establish a
theoretical framework to study the diffusive behaviour of a Lorentz lattice gas. Exact results for
the geometrical scaling behaviour of closed paths are also presented.

The Temperley–Lieb (TL) algebra arose in the context of statistical mechanics and was used
to map theq-state Potts model into the six-vertex model [1]. The relevance of this algebra
to the theory of two-dimensional solvable models was further elaborated by Baxter [2] and
the first detailed study of its mathematical structure was given by Jones [3]. In recent years,
interest in TL algebras has been widespread in many branches of physics and mathematics,
including quantum spin chains [4, 5], conformal field theory [6] and knot theory [7, 8] to
name just a few.

In this letter, motivated by physical considerations, we introduce and investigate a
variant of the TL algebra. Our physical motivation is to describe the diffusion behaviour
of a Lorentz lattice gas, consisting of a dilute gas of particles moving in a random array
of scatterers [9]. In the model we consider here, a particle moves along the bonds of the
square lattice and its trajectory is changed when it hits scatterers which are either mirrors
in different orientations or (right and left) rotators randomly placed at the sites of the lattice
[9, 10]. These are perhaps the simplest nontrivial ‘scattering rules’ one can think of and
they are illustrated in figure 1. To describe the statistical behaviour of these paths in a more
general way, we assign a fugacityq to every closed trajectory. This then defines a loop
model and its partition function is given by

Z =
∑

scatter configurations

wnaa w
nb
b w

nc
c w

nd
d q

#paths (1)

wherewa(wc) andwb(wd ) are the Boltzmann weights probabilities of right and left mirrors
(rotators) andni(i = a, b, c, d) are the the number of weights in a given configuration.
Settingq = 1 we recover the Lorentz gas model.

In the absence of rotators (wc = wd = 0), the partition function (1) can be interpreted as
a graphical representation of theq2-state Potts model, and therefore the algebraic structure
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Figure 1. Scattering rules for (a) right mirrors; (b) left mirrors; (c) right rotators; (d) left
totators on the square lattice.

underlying the mirror collision rules is the standard TL algebra. This is no longer valid if
rotators are present, because a particle hitting a rotator does not behave exactly the same
as when it hits a mirror. In fact, the algebra that mimics the behaviour of rotators is as
follows. We associate to right and left rotators the elementsRi andLi , acting on sitesi
and i + 1 of a quantum spin chain of sizeL. We find thatRi andLi are generators of the
following associative algebra

R2
i = qRi L2

i = qLi [Ri, Li ] = 0 (2)

LiRi±1Li = Li RiLi±1Ri = Ri [Ri, Ri±1] = [Li, Li±1] = 0 (3)

[Li, Lj ] = [Ri, Rj ] = [Ri, Lj ] = 0 |i − j | > 2. (4)

These relations can be seen as two commuting TL algebras whose generators alternate
betweenRi andLi depending on the parity of the sites. This algebra has to be read in
conjunction with the TL operatorEi = RiLi and the identityIi , which in the Lorentz
gas corresponds to left and right mirrors, respectively. It is interesting to note that this
algebra also allows us to define the braid operatorbi = Ri + Li − eθEi − e−θ Ii and its
inverseb−1

i = Ri + Li − e−θEi − eθ Ii , where the parameterθ is related to the fugacity
by q = 2 cosh(θ). The real surprise is the fact that the braid-monoid operatorsbi , b

−1
i

andEi satisfy the Birman–Wenzel–Murakami (BWM) algebra [11]. More precisely, this
connection occurs when the two independent parameters

√
Q andc of the BWM algebra (we

are using the notation of [8]) lie on the curve
√
Q = 4 cosh2(θ) andc = −e3θ . However, in

the context of the Yang–Baxter equation, we find that the ‘rotator’ algebra (2)–(4) is richer
than the BWM algebra (on the above curve), since the former gives us an extra integrable
manifold.

To make further progress we look for possible integrable manifolds for the Boltzmann
weightswa, wb, wc andwd . This not only allows us to establish a theoretical framework
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to study the Lorentz lattice gas but also prompts us to make exact predictions for its
diffusive behaviour. The basic idea is to search for solutions of the Yang–Baxter equation
by Baxterizing the ansatzwaIi + wbEi + wcRi + wdLi with the help of the algebraic
relations (2)–(4). Here we omit technical details, presenting only the final results. We find
three different integrable manifolds given by

(I) wa(λ) = sinh(θ − λ)
sinh(λ)

wb(λ) = 1/wa(λ) wc(λ) = wd(λ) = 1 (5)

(II) wa(λ) = sinh(θ − λ)
sinh(λ)

wb(λ) = − cosh(θ − λ)
cosh(2θ − λ) wc(λ) = wd(λ) = 1 (6)

(III ) wa(λ) = q

e2λ − 1
wb(λ) = qe2λ

q2− 1− e2λ
wc(λ) = 1 wd(λ) = 0 (7)

whereλ is the spectral parameter of the Yang–Baxter equation. The third solution also
admitswc(λ) = 0 andwd(λ) = 1, since the algebra (2)–(4) is invariant under the exchange
of left and right rotators.

In order to interpret these solutions it is more appealing to work with a specific
representation for the generatorsRi and Li . In the language of quantum spin chains,
we find that these generators can be written as

Ri = σ+i τ−i+1+ σ−i τ+i+1+
cosh(θ)

2
(1− σ zi τ zi+1)+

sinh(θ)

2
(τ zi+1− σ zi ) (8)

Li = τ+i σ−i+1+ τ−i σ+i+1+
cosh(θ)

2
(1− τ zi σ zi+1)+

sinh(θ)

2
(σ zi+1− τ zi ) (9)

where{σ±i , σ zi } and {τ±i , τ zi } are two commuting sets of Pauli matrices acting on the sites
of a lattice of sizeL.

Considering this representation, it is not difficult to see that solution (I) behaves the
same as two decoupled six-vertex models and therefore the underlying symmetry is based
on theD2 Lie algebra [12]. The second solution corresponds to a pair of six-vertex models
coupled, in a finely tuned way, through their (total) energy–energy interaction. Its quantum
group symmetry, after a canonical transformation, can be related to the twistedA2

3 Lie
algebra [12]. The third solution is clearly asymmetric in the spin variables and therefore
cannot be interpreted in terms of the BWM algebra. This solution has also a number of
unusual properties. For instance, the asymptotic braid limitsR(±∞) are not invertible and
for the special valuesq = ±1 we find a connection to asingular point (t = 0 in the
notation of [11]) of the Hecke algebra. In the context of spin models, we have verified that
the Boltzmann weights (7) can be related to an integrable non-self-dual manifold [13] of
generalized Potts models introduced by Domany and Riedel [14] to model the adsorption
of molecules on a crystal surface.

We now turn our attention to the Lorentz lattice gas. Forq = 1 only the first two
solutions turn out to be physically meaningful, since all the Boltzmann weights can be made
positively definite. Thus, we shall concentrate our efforts on studying the critical behaviour
of these two solutions with the expectation of making predictions for the geometrical scaling
behaviour of closed particle paths in the Lorentz lattice gas. To this end, we study these
models with generalized boundary conditions, in order to assure that closed loops on the
cylinder pick up the correct Boltzmann weights. In general, these are twisted boundary
conditions defined by

σ±L+1 = e±iψ1σ±1 τ±L+1 = e±iψ2τ±1 σ zL+1 = σ z1 τ zL+1 = τ z1 (10)

whereψ1 andψ2 are appropriate angles.
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The critical behaviour of solution (I) is that of two decoupledXXZ spin chains and
consequently the results for the central charge and anomalous dimensions can be read off
directly from previous work in the literature [4]. This system is critical in the regime
q ∈ [2,−2] and it is more convenient to parametrize the fugacity byq = 2 cos(γ ). It turns
out that the effective central charge behaviour is

c = 2− 3

xp(γ )

2∑
i=1

[ψi/2π ]2 (11)

while the conformal dimensions are given by

Xm1,m2
n1,n2

=
2∑
i=1

[
xp(γ )n

2
i +

1

4xp(γ )
(mi + ψi/2π)2

]
(12)

whereni andmi are integers representing the spin-wave and the vortex excitations of two
decoupled Coulomb gases—both having the same radius amplitudexp(γ ) = π−γ

2π . The
finite-size corrections (11,12) are measured relative to the ground state of twoperiodic
XXZ models [4].

The second solution corresponds to two nontrivially coupledXXZ models and it is
possible to show that its Bethe ansatz solution is formally related to that of theA2

3 vertex
model [15]. The critical properties of the latter model has only been partially studied in the
literature [16] and in a region that excludes the Lorentz lattice gas itself. We remark that
here we have to perform the calculations in the presence of the seamsψ1 andψ2, since
they play a crucial role in the underlying critical behaviour. We find that the eigenvalues
of the Hamiltonian associated to the second solution are given by

EII (L) =
r1∑
j=1

2 sin2(γ )

cos(γ )− cosh(λ(1)j )
(13)

and the corresponding Bethe ansatz equations are[
sinh(λ(1)j /2− iγ /2)

sinh(λ(1)j /2+ iγ /2)

]L
= −eiψ1

r1∏
k=1

sinh(λ(1)j /2− λ(1)k /2− iγ )

sinh(λ(1)j /2− λ(1)k /2+ iγ )

×
r2∏
k=1

sinh(λ(1)j − λ(2)k + iγ )

sinh(λ(1)j − λ(2)k − iγ )
j = 1, . . . , r1 (14)

ei(ψ1−ψ2)
r1∏
k=1

sinh(λ(2)j − λ(2)k + i2γ )

sinh(λ(2)j − λ(2)k − i2γ )
= −

r2∏
k=1

sinh(λ(2)j − λ(1)k + iγ )

sinh(λ(2)j − λ(1)k − iγ )
j = 1, . . . , r2.

(15)

The existence of the Bethe ansatz solution allows us to calculate, not only the
thermodynamic limit, but also the dominant finite-size corrections for the eigenvalues of the
Hamiltonian. For a conformally invariant system, these finite-size effects can be directly
related to the central charge and scaling dimensions [17, 18], providing us with a way to
study the universality class of solution (II). An essential step here is to determine the nature
of the Bethe anstaz roots governing the ground state properties. In the regime that we are
interested in, i.e. nearγ ∼ π/3, we find a mixture between one-string and two-string type
of solutions. More precisely, the complex roots structure is given by

λ
(1)
j = ξ (1)j ± i(π/2− γ )+O(e−L) λ

(2)
j = ξ (2)j + iπ/2 (16)

whereξ (a)j are real numbers.
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Table 1. Finite size sequences for the extrapolation of the effective central charge forγ = π/3.

L ψ1 = ψ2 = π/3 ψ1 = ψ2 = π/4 ψ1 = π/3, ψ2 = π/4
8 1.556 67 1.788 90 1.672 53

16 1.518 57 1.630 17 1.630 17
24 1.510 21 1.731 59 1.620 83
32 1.506 83 1.727 37 1.617 05
40 1.505 06 1.725 16 1.615 07
Extrapolation 1.500 1(2) 1.718 6(2) 1.609 2(2)

Table 2. Finite size sequences for the extrapolation of the spin-wave anomalous dimensions
X

0,0
1,0 andX0,0

1,1 for periodic boundary conditions.

L X
0,0
1,0(γ = π/3) X

0,0
1,1(γ = π/3) X

0,0
1,0(γ = π/3.5) X

0,0
1,1(γ = π/2.5)

8 0.344 610 0.640 435 0.404 331 0.599 395
16 0.337 923 0.653 822 0.392 503 0.599 587
24 0.336 174 0.658 341 0.387 451 0.599 756
32 0.335 383 0.660 548 0.384 344 0.599 839
40 0.334 934 0.661 844 0.382 155 0.599 890
Extrapolation 0.333 30(2) 0.666 65(2) 0.357 5(3) 0.600 0(2)

In order to determine the finite-size corrections for the ground state, we have numerically
solved the Bethe ansatz equations for several values of the lattice size up toL ∼ 40.
In table 1 we present our estimates for the effective central charge for general boundary
conditions. Surprisingly, the behaviour is precisely the same of that given in formula (11)
which suggests that the coupling between the twoXXZ models becomes asymptotically
irrelevant nearq = 1. To give extra support to this scenario we have also investigated the
low-lying spin-wave excitations. In table 2 we show some estimates for the exponentsX

0,0
1,0

andX0,0
1,1 and they are in accordance with the conformal dimensions (12). More generally,

we verified that the critical behaviour for role regionq ∈ [0,
√

2) is given in terms of two
decoupled Coulomb gas models. However, in the regimeq ∈ [

√
2, 2] the coupling between

the twoXXZ models becomes relevant, and the criticality is governed by ac = 3 conformal
field theory. We note that in the first branch all the Boltzmann weights probabilities can be
positively defined while in the second one eitherwb or wa is necessarily negative. This is
perhaps the physical reason behind these two differentantiferromagneticcritical behaviour.
Finally, we remark that our results complement and correct an early calculation in the
literature [16].

We now have the basic ingredients to study the scaling properties of closed trajectories
in the Lorentz lattice gas model. From our previous analysis we conclude that the critical
behaviour, for both manifolds (I) and (II), is given in terms of two decoupled Coulomb gas
in the presence of the background chargesψ1 = ψ2 = 2γ = 2π/3. Here we are interested
in correlators that measure the probabilities that two points on the lattice separated byr

belong to the same loop [19]. For large distances we expect the algebraic decay

〈8l(r)8l(0)〉 ∼ r−2Xl (17)

whereXl is the scaling dimension of the conformal operator8l(r) [20]. Equipped with
equations (11) and (12) we can now calculate the dimensionsXl for theq = 1 model. The
probability that l = n1 + n2 loop segments meet in the neighbourhood of two points in
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the lattice is associated to the conformal dimensions of the spin-wave excitationsn1 and
n2 with null vortex chargesm1 = m2 = 0 [19, 20]. Due to the background charges, we
also have to subtract the variation of the true ground state for the Lorentz lattice gas. We
conclude that the value of these dimensions is

Xn1,n2 =
2∑
i=1

[
xp(π/3)n

2
i −

( 1
3)

2

4xp(π/3)
(1− δni ,0)

]

=
2∑
i=1

[
n2
i

3
− (1− δni ,0)

12

]
. (18)

The scaling behaviour of single paths is governed by the lowest conformal dimension
X1,0 = X0,1 = 1

4, predicting a fractal dimension [21]df = 2− 1
4 = 7

4. This is the same
value found in numerical simulations of a fully occupied lattice of either mirrors or rotators
[21, 22]. Therefore, our result brings an extra theoretical support to the fact that the scaling
behaviour of single paths does not depend on whether the scatterers are mirrors or rotators.
However, the situation changes drastically when we consider the probability for multi-loops,
l > 2. In fact, in the case of a mixed rotator–mirror model the second lowest dimension
occurs in the sectorn1 = n2 = 1, and the corresponding fractal dimension isdf = 2− 1

2 = 3
2.

This value is double that expected (df = 2− 5
4 = 3

4) when we have only mirrors [20]. In
general, formula (18) leads us to conclude that the multi-loops scaling behaviour is sensible
to the details of the scattering mechanism. This can be understood when it is noted that
a single particle scattered by a lattice full of rotators and mirrors can not distinguish the
two types of scatterers. However, two particles in different orbits are capable of making
the distinction. Finally, we remark that our findings are valid for rather distinct manifolds,
suggesting thatwc = wd is indeed a critical surface in the Lorentz gas model.

In summary, we have introduced a variant of the TL algebra which generates three
classes of solutions of the Yang–Baxter equation. We have applied the first two of them
to study the diffusion behaviour of a Lorentz lattice gas whose scatterers are either mirrors
or rotators. The third manifold seems to be relevant to the study of phase transition in
adsorbed films [14], and we hope to investigate its critical properties in a future publication.
Finally, we remark that after this paper had been written we noted the very recent work
[23] in which thethird manifold and its generalizations were obtained via Baxterization of
Fuss–Catalan algebras.

This work was supported by FOM (Fundamental Onderzoek der Materie) and Fapesp
(Fundac¸ão de Amparoà Pesquisa do Estado de S Paulo) and Cnpq (Conselho Nacional
de Desenvolvimento Cientı́fico e Tecnoĺogico).
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